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A physically motivated near zone preconditioner is presented for solving the equations obtained from finite element method. Different 

from common sparse approximate inverse (SPAI) preconditioner, the proposed one gives the sparsity pattern based on a physical 

approximation. And its sparseness can be adjusted in different applications. The process of the algorithm needs low memory and CPU 

time, and is inherently parallel. The preconditioner in conjunction with conjugate gradient method is used to calculate the electrical 

fields in a power transformer. And this application demonstrates the effectiveness of the approach.  
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I. INTRODUCTION 

HE EQUATIONS which are derived from engineering 

problems based on finite element method (FEM) are usually 

sparse, and also frequently badly conditioned. In such cases, it 

may make the convergence rate of the iteration low and the 

accuracy of the result bad. Hence, the original equation needs 

to be transferred into another equation which has lower 

condition number. The preconditioning techniques can realize 

the transformation. In other word, a preconditioner would make 

the spectral properties of the coefficient matrix better. 

The most popular preconditioner is incomplete Cholesky (IC) 

factorization preconditioners for symmetric and definite 

matrices [1], or incomplete LU (ILU) factorization 

preconditioners for general matrices [2]. The IC or ILU 

factorization apply some recursive algorithms to form a sparse 

lower triangular matrix and a sparse upper triangular matrix, 

which is difficult to be computed in parallel.  

A common parallelized preconditioner is approximate 

inverse preconditioner, which was the first to be proposed in the 

1970s [3]. The main difficulty of the approximate inverse 

techniques to form the preconditioners is how to pick a suitable 

sparsity pattern for a good preconditioner. To overcome the 

difficulty, the SPAI preconditioner is proposed, whose sparsity 

pattern is captured automatically [4]. But for some problems, 

the performed sparsity pattern may not be very perfect. 

The major purpose of this paper is to introduce a sparsity 

pattern to construct an approximate inverse preconditioner in 

parallel. The proposed sparsity pattern is based on the fact that 

the solution of one node in finite element method is directly 

affected by the properties of near zone nodes. Similar ideas are 

also used in the method of moment solutions for integral 

equations [5]. 

II. DERIVATION OF THE PRECONDITIONER 

In the numerical analysis for some engineering problems, the 

discretized matrix equations derived from finite element 

method generally has the following form 

 Ax b  (1) 

The coefficient matrix A is sparse and commonly has a large 

condition number, which result in a high computational cost for 

the iterative solver. In order to improve the situation, we 

consider a preconditioning matrix M, and apply it into (1). Then, 

the preconditioned equation can be described as 

 MAx Mb  (2) 

The matrix M should have a good approximation of A-1, and 

it also should have a good sparsity pattern to decrease the 

computational cost. Considering the features of M, a method to 

obtain the preconditioner is to minimize the 2-norm of the 

residual matrix I-AM 
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The vector mk is the kth column of the matrix M, and ek is the 

unit vector. The set S is the sparsity pattern of the matrix M, and 

the set sk is the sparsity pattern of the vector mk. And n is the 

order of matrix A. The solution of (3) is in equivalent to n 

independent least square problems 
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The process to solve (4) is to solve n independent equations, 

which can be solved completely in parallel. The remaining 

problem is to obtain a suitable sparsity pattern for M. The basic 

idea to determine the sparsity pattern for M is as follows. 

Based on the characteristics of the stiff matrix arises from 

finite element method, the elements in A is directly affected by 

the connection between nodes. Fig. 1 shows the correlation 

between node 1 and the surrounded nodes. And it is just part of 

the whole physical domain divided by the quadratic element.  
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Fig. 1. Correlation between node 1 and the surrounded nodes. 
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In Fig. 1, node 1 has a strong relevance with node 1~9, which 

is labelled as level 1. The nodes of level 2, that is node 10~25, 

has a lower relevance than level 1, which can be labeled as level 

2. This relevance can be extended to the whole domain. 

The way to analyze the correlation degree between node 1 

and its surrounded nodes can also be applied to other nodes. 

And to some extent, the correlation degree between nodes 

reflects the strength of coupling in physical fields. Hence, we 

can take strong coupling elements as the nonzero elements in 

M, which can determine the sparsity pattern of M. For (4) when 

k=1, the nonzero elements in vector m1 may belong to the set 

S11 (S11={m1,m2, …, m9}), and the subscript of the elements in 

S11 is the same as the node number in the level 1. If changing 

the nonzero elements set S11 to S21 (S21={m1,m2, …, m25}), the 

vector m1 can be calculated more accurate and less sparse. And 

if the nonzero elements set including all of the elements, which 

is corresponding to the fact that node 1 have relevance with the 

whole nodes in the domain, the solution of m1 is exactly equal 

to the fist column vector of A-1.  

The above has showed the strategy to obtain the sparsity 

pattern of m1, and other column of M can also be achieved with 

the same technique. Supposing the nonzero elements of mk       

belongs to the set Sk, and J is a set which equals the subscripts 

of the elements in Sk, a new submatrix A(I,J) can be defined, 

where the set I is obtained when A(:,J) is not equal to zero. With 

the new defined submatrix, problems (4) can be reduced to the 

following forms  

 1,2,k k kA m e k n   (5) 

with  

 ( , )kA A I J ， ( , )km M J k ， ( )ke e k   

Since coefficient kA  is small, equation (5) can be easily 

solved through least squared method. 

III. NUMERICAL EXPERIMENT  

A problem of computing electrical fields in a power 

transformer is used to test the proposed algorithm. The 

calculation model is showed in Fig.2. The model is 2D 

equivalent model from part of an actual power transformer. In 

the model, the left and bottom is symmetric, and the top and 

right is the tank, which is grounded. The coil is connected to the 

voltage excitation. The dielectric constants of oil and paper in 

the model are 02.2oil  , 04.4paper  .  

Coil

Oil

Paper  
Fig. 2. Calculation model of power transformer. 

The model is divided into 16000 quadratic elements with 

16301 FEM unknowns. And the condition number of the stiff 

matrix is 
203.35 10 , while the number of the none zero entries 

is 144901.The tradition CG method, ICCG method and 

preconditioning conjugate gradient (PCG) method with 

preconditioners proposed in section Ⅱ are applied to calculate 

the electrical fields of the power transformer. Fig.3 displays the 

convergence curves with different methods when the voltage 

applied to the coil is 10 KV. In the figure, the label “lev1_PCG” 

means PCG method, in which the sparsity pattern of the 

preconditioner is derived from the nodes of level 1 in Fig.1 . 

And the other labels have the same meaning. Obviously, the 

preconditioner in “lev4_PCG” is more complicated and less 

sparse than in “lev1_PCG”. 

Fig.3 reveals the main features of the preconditioners 

proposed in this paper. On one hand, it’s clear that the more 

complicated of the preconditioner, the faster of the convergence 

in the iteration solver of PCG method. On the other hand, the 

PCG method is faster than traditional CG method within a 

certain residual error. And it has a similar iteration speed with 

ICCG method, while the proposed method can be implemented 

in parallel. 

 
Fig.  3. Convergence curves with different methods, where Ԑ=‖Axk-b‖2/‖xk‖2. 

IV. CONCLUSIONS 

A strategy to compute the preconditioner for solving the 

finite element equations has been presented in this paper. It 

needs low computational cost and can be realized in parallel. 

Different sparseness of the preconditioner has also been 

described to be used in applications with different levels of 

complexity. The features of the preconditioner are displayed 

through an industrial application of calculating the electrical 

fields in a power transformer. 
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